09.01.2020

Statistical Methods in AI (CSE/ECE 471)

Lecture-3: Intro to Performance Measures, Benchmarking

Ravi Kiran (ravi.kiran@iiit.ac.in)

Vineet Gandhi (v.gandhi@iiit.ac.in)

Center for Visual Information Technology (CVIT) IIIT Hyderabad

Machine Learning

Study of Algorithmic methods that use data to improve their knowledge of a task

An interview analogy

- 1. Collect worked out problems (Q, S are both known)
- 2. Prepare on ALL the available problems.
- 3. Go for interview.
- 1. Collect worked out problems (Q,S are both known)
- 2. Randomly set aside a small number of problems.
- 3. Prepare on rest of the problems.
- 4. Take a mock interview containing all the 'set aside' problems.
- 5. <u>Score answers</u> and compare with solution.
- 6. Use mistakes to decide which topics to prepare better on.
- 7. Go for interview.

Original set	
Training set	Test set

Original set

Original set			
Training set Test set			
Training set	Test set		

Supervised Learning

ML::Tasks \rightarrow Predictive \rightarrow Classification

Task: Given $X \in \mathcal{X}$, predict $Y \in \mathcal{Y}$.

Discrete Labels

Binary Classification

Performance Measures - Accuracy

$$Accuracy = \frac{(100 + 50)}{165} = 0.91$$

Misclassification $= \frac{(10 + 5)}{165} = 0.09$

n=165	Predicted: NO	Predicted: YES
Actual:		
NO	50	10
Actual:		
YES	5	100

- Pool of 100 patients' data used for validation of a cancer prediction ML model
- Prediction:
 - 3 have cancer
 - Rest (100-3=97) are healthy.
- Reality:

Accuracy =

- 1 of the 3 did not actually have cancer !
- 3 from 97 predicted healthy actually have cancer

	Predicted:	Predicted:
n=	NO	YES
Actual:		
NO		
Actual:		
YES		

- Pool of 100 patients' data used for validation of a cancer prediction ML model
- Prediction:
 - 3 have cancer
 - Rest (100-3=97) are healthy.
- Reality:
 - 1 of the 3 did not actually have cancer !
 - 3 from 97 predicted healthy actually have cancer
- Accuracy = (100 4) / 100 = 96% !

	Predicted:	Predicted:
n=	NO	YES
Actual:		
NO		
Actual:		
YES		

- Pool of 100 patients' data used for validation of a cancer prediction ML model
- Prediction:
 - 3 have cancer → selected for chemotherapy
 - Rest (100-3=97) are healthy.
- Reality:
 - 1 of the 3 did not actually have cancer !
 - 3 from 97 predicted healthy actually have cancer → should have been selected for chemotherapy

	Predicted:	Predicted:
n=	NO	YES
Actual:		
NO		
Actual:		
YES		

Performance Measures - Accuracy

$$Accuracy = \frac{(100 + 50)}{165} = 0.91$$

Misclassification $= \frac{(10 + 5)}{165} = 0.09$

n=165	Predicted: NO	Predicted: YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Performance Measures – Accuracy, TPR, FPR

$$Accuracy = \frac{(100 + 50)}{165} = 0.91$$

$$Misclassification = \frac{(10 + 5)}{165} = 0.09$$

$$FalsePositiveRate(FP) = \frac{(10)}{60} = 0.17$$

$$FalseNegativeRate(FN) = \frac{(5)}{105} = 0.048$$

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

$$TrueNegativeRate(TN) = \frac{(50)}{60} = 0.833$$
$$TruePositiveRate(TP) = \frac{(100)}{105} = 0.95$$

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

n=165	Predicted: NO	Predicted: YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

n=165	Predicted: NO	Predicted: YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

n=165	Predicted: NO	Predicted: YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

correct prediction of + class [aka Precision]

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

% of correct predictions

[aka Precision]

% of – class incorrectly predicted

Cancer-Prediction System

- Precision =
- Recall =
- Accuracy =

Cancer-Prediction System

- Precision = 2/(2+1) = 67%
- Recall = 2/(2+3) = 40%
- Accuracy = (94+2)/100 = 96%

Precision and Recall – examples

- A system which needs to launch a missile at a terrorist hideout located in a dense urban area.
- Precision not 100% → civilian casualties
- A system which needs to identify cancer-risk patients
- Recall not 100% → some patients will die of cancer

Accuracy vs Precision vs Recall

- Accuracy : Performance w.r.t both classes
- Recall : Performance w.r.t '+' class
- Precision : Reliability of predictions w.r.t '+' class

Utility and Cost

- Sometimes, there is a cost for each error
 - E.g. Earthquake prediction
 False positive: Cost of preventive measures
 False negative: Cost of recovery
- Detection Cost (Event detection) \bigcirc Cost = C_{FP} * FP + C_{FN} * FN

Farmer Shri MoneyBags and ML-FruitPicker

- MB : I want an automated fruit picker and packer. I will pay an unholy amount for it.
- You (having just finished this lecture) : Sure
- You (Thinking): I love unholy amounts of money 😇
- (rapid cuts of time passing, you collecting data, referring to SMAI slides, coding ; dramatic music in background)

Farmer Shri MoneyBags and ML-FruitPicker

After 6 months ...

- MB : Well ?
- You : I have a High Precision ML-FruitPicker. But its Recall is 20% !
- MB : (confused) Precision ? Recall ?
- You : (thinking) Should I go over first 3 lectures of SMAI with MB ? He'll probably run away !
- You : It rejects 80% of good, pickable fruit, but whatever it picks, those fruits are good !
- MB : I'll take your system. How do I transfer unholy amount of money to you ?
- You : 😯
- MB (seeing your shocked face) : See, in a batch of 100 fruits, 10 fruits are usually bad. Among the 90 good ones, your system will select 18 of them on average. But from any given selection, I pack only 8.

Accuracy vs Precision vs Recall

- Monitor **Precision** if a false positive carries higher cost.
- Monitor **Recall** if a false negative carries higher cost.

Accuracy vs Precision vs Recall

- Precision → Cost of inclusion
- **Recall** \rightarrow Cost of exclusion

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

% of correct predictions

% of + class correctly predicted [aka Recall / TPR]

correct prediction of + class

% of - class incorrectly predicted

F1-score: A unified measure

• What to do when one classifier has better precision but worse Recall, while other classifier behaves exactly opposite?

○ F-measure (Information Retrieval)

$$F_1 = \frac{1}{Recall} + \frac{1}{Precision}$$

Utility and Cost

- What to do when one classifier has better Precision but worse Recall, while other classifier behaves exactly opposite?
 - F-measure (Information Retrieval)

$$\mathsf{F}_{\mathsf{1}} = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

- \rightarrow F1 measure punishes extreme values more !
- → Definition of Recall and Precision have same numerator, different denominators. A sensible way to combine them is harmonic mean.

How to use 2-class measures for multi-class ?

Convert into 2-class problems !

- Average Precision, Recall etc.

Avg. accuracy may not be very meaningful with imbalanced class label distribution

Multi-class problems - Confusion matrix

activity recognition from video

predicted class

actual class

Multi-class Classification: Measures

- Mean <measure> +- standard deviation
- Median <measure> +- median absolute deviation

Decemintor	Spectral bands		
Descriptor	RGB	PCA RGB	
Gist	74.14 ± 1.93	77.76 ± 2.62	
MSIFT	88.92 ± 1.39	90.97 ± 1.81	
MBoW	88.60 ± 1.70	88.31 ± 1.38	
cSIFT	88.17 ± 1.17	88.76 ± 1.74	
rgSIFT	88.24 ± 1.89	87.71 ± 1.33	
BoWV [8]	71.86	N/A	
SPMK [12]	74.00	N/A	
SPCK++[8]	76.05	N/A	
Dense SIFT [2]	81.67 ± 1.23	N/A	

Exam analogy: Did you prepare at least a little ?

Original set			
Training set		Test set	
Training set	Validation set	Test set	

- Compute <Performance Measure> (e.g. Accuracy) for TRAINING SET
- Verify it is "decent"

Example-based

- $\underline{\underline{N}}_{i}$ is the number of examples. $\underline{\underline{Y}}_{i}$ is the ground truth label assignment of the $\underline{\underline{i}}^{th}$ example. $\underline{\underline{x}}_{i}$ is the $\underline{\underline{i}}^{th}$ example.
- $h(x_i)$ is the predicted labels for the <u>i</u>th example.

What fraction of labels are predicted correctly?

$$\operatorname{Recall} = \frac{1}{n} \sum_{i=1}^{n} \frac{|Y_i \cap h(x_i)|}{|Y_i|}$$

What % of correct labels were predicted?

Accuracy = Fraction of samples predicted correctly

Baselines

- 0 cost-to-build classifiers
- Binary
 - Equal # of samples / class → Random Guessing (50% accuracy)
 - Class imbalance
 - \rightarrow Guess according to class proportion (Accuracy =
 - O-Rule: Majority class (Accuracy =) [slightly stronger baseline]

Summary

- Many metrics:
 - O Accuracy, TP, FP, Precision, Recall, AP/mAP
 - Class imbalance and decision-cost imbalance must be taken into account
- Confusion Matrix: Important to analyze and refine solution.

A useful metric is both accurate (in that it measures what it says it measures) and aligned with your goals.

Don't measure anything unless the data helps you make a better decision or change your actions.

~ Seth Godin

References and Reading

- Code
 - <u>https://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics</u>