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Study of Algorithmic methods that use data to improve their knowledge of a task

Machine Learning
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An interview analogy
1. Collect worked out problems (Q, S are 

both known)
2. Prepare on ALL the available problems.
3. Go for interview.

1. Collect worked out problems (Q,S are both known)

2. Randomly set aside a small number of problems.

3. Prepare on rest of the problems.

4. Take a mock interview  containing all the ‘set aside’ problems.

5. Score answers and compare with solution.

6. Use mistakes to decide which topics to prepare better on.

7. Go for interview.
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Supervised 
Learning

Classification Regression



ML::Tasks → Predictive → Classification



The Train-Validation-Test paradigm



Classification

Binary Multi-class Multi-label Structure

Supervised 
Learning

{0,1} 1-of-K n-of-K

E.g. graph/sequence



Binary Classification



Performance Measures - Accuracy
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● Pool of 100 patients’ data 

used for validation of a 

cancer prediction ML model

● Prediction:

● 3 have cancer

● Rest (100-3=97) are 

healthy.  

● Reality: 

● 1 of the 3 did not actually 

have cancer !  

● 3 from 97 predicted 

healthy actually have 

cancer

● Accuracy =
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● Pool of 100 patients’ data 

used for validation of a 

cancer prediction ML model

● Prediction:

● 3 have cancer

● Rest (100-3=97) are healthy.  

● Reality: 

● 1 of the 3 did not actually 

have cancer !  

● 3 from 97 predicted healthy 

actually have cancer

● Accuracy =  (100 - 4) / 100 = 

96% !



18

● Pool of 100 patients’ data used for 

validation of a cancer prediction ML 

model

● Prediction:

● 3 have cancer → selected for 

chemotherapy

● Rest (100-3=97) are healthy.  

● Reality: 

● 1 of the 3 did not actually have 

cancer !  

● 3 from 97 predicted healthy 

actually have cancer → should 

have been selected for 

chemotherapy

● Accuracy =  (100 - 4) / 100 = 96% !



Performance Measures - Accuracy
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Performance Measures – Accuracy, TPR, FPR
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Summary of Measures 
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● Cancer-Prediction System

● Precision = 

● Recall = 

● Accuracy =
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● Cancer-Prediction System

● Precision = 2/(2+1) = 67%

● Recall = 2/(2+3) = 40% 

● Accuracy = (94+2)/100 = 96%
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● A system which needs to launch a missile at a 

terrorist hideout located in a dense urban area.

● Precision not 100% ➔ civilian casualties

● A system which needs to identify cancer-risk patients

● Recall not 100% ➔ some patients will die of cancer

Precision and Recall – examples



Accuracy vs Precision vs Recall
● Accuracy :  Performance w.r.t both classes
● Recall      :  Performance w.r.t ‘+’ class 
● Precision :  Reliability of predictions w.r.t ‘+’ class   

% of correct predictions correct prediction of + class
[aka Precision]

% of + class correctly predicted
[aka Recall / TPR]



Utility and Cost
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● Sometimes, there is a cost for each error

○ E.g. Earthquake prediction

■ False positive:  Cost of preventive measures

■ False negative: Cost of recovery

● Detection Cost (Event detection)

○ Cost = CFP * FP + CFN * FN



Farmer Shri MoneyBags and ML-FruitPicker

● MB : I want an automated fruit picker and packer. I 
will pay an unholy amount for it.

● You (having just finished this lecture) : Sure
● You (Thinking): I love unholy amounts of money 
● (rapid cuts of time passing, you collecting data, 

referring to SMAI slides, coding ; dramatic music in 
background)



Farmer Shri MoneyBags and ML-FruitPicker

After 6 months … 
● MB : Well ?
● You : I have a High Precision ML-FruitPicker. But its Recall is 20% ! 
● MB : (confused) Precision ? Recall ?
● You : (thinking) Should I go over first 3 lectures of SMAI with MB ? He’ll 

probably  run away ! 
● You : It rejects 80% of good, pickable fruit, but whatever it picks, those 

fruits are good !
● MB : I’ll take your system. How do I transfer unholy amount of money to 

you ? 
● You : 
● MB (seeing your shocked face) :  See, in a batch of 100 fruits, 10 fruits are 

usually bad. Among the 90 good ones, your system will select 18 of them 
on average. But from any given selection, I pack only 8.   



Accuracy vs Precision vs Recall
● Monitor Precision if a false positive carries higher cost.
● Monitor Recall if a false negative carries higher cost.

% of correct predictions correct prediction of + class
[aka Precision]

% of + class correctly predicted
[aka Recall / TPR]



Accuracy vs Precision vs Recall
● Precision→ Cost of inclusion
● Recall→ Cost of exclusion

% of correct predictions correct prediction of + class
[aka Precision]

% of + class correctly predicted
[aka Recall / TPR]



Summary of Measures 

% of correct predictions correct prediction of + class % of + class correctly predicted
[aka Recall / TPR]

% of – class incorrectly predicted 



F1-score: A unified measure
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● What to do when one classifier has better precision but 
worse Recall, while other classifier behaves exactly 
opposite?

○ F-measure (Information Retrieval) 

■ F1 = 



Utility and Cost
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● What to do when one classifier has better Precision but 
worse Recall, while other classifier behaves exactly 
opposite?

○ F-measure (Information Retrieval) 

■ F1 = 

→ F1 measure punishes extreme values more !
→ Definition of Recall and Precision have same numerator, different denominators. A sensible way to 

combine them is harmonic mean.



Classification

Binary Multi-class Multi-label Structure

Supervised 
Learning

{0,1} 1-of-K n-of-K

E.g. graph/sequence



● Convert into 2-class problems ! 

How to use 2-class measures for multi-class ?

- Average Precision, Recall etc. 

Avg. accuracy may not be very meaningful with 
imbalanced class label distribution



Multi-class problems - Confusion matrix

42Courtesy: vision.jhu.edu



Multi-class Classification: Measures
- Mean <measure>  +- standard deviation
- Median <measure> +- median absolute deviation



Exam analogy: Did you prepare at least 
a little ?

● Compute <Performance Measure> (e.g. Accuracy) for TRAINING SET 
● Verify it is “decent”



Classification

Binary Multi-class Multi-label Structure

Supervised 
Learning

{0,1} 1-of-K n-of-K

E.g. graph/sequence



Example-based
• is the number of examples.
• is the ground truth label assignment of the example..
• is the example.
• is the predicted labels for the example.

Precision = What fraction of labels are predicted correctly ?

Recall =
What % of  correct labels were predicted ? 

Accuracy = Fraction of samples predicted correctly

https://i.stack.imgur.com/SSXLl.gif
https://i.stack.imgur.com/QQTSm.gif
https://i.stack.imgur.com/MBndJ.gif
https://i.stack.imgur.com/Ihr7y.gif
https://i.stack.imgur.com/2TYDJ.gif
https://i.stack.imgur.com/kYRv8.gif
https://i.stack.imgur.com/MBndJ.gif
https://i.stack.imgur.com/PbUbg.gif
https://i.stack.imgur.com/k1AER.gif


Baselines

• 0 cost-to-build classifiers

• Binary
– Equal # of samples / class → Random Guessing (50% 

accuracy)

– Class imbalance 
• → Guess according to class proportion (Accuracy =                )

• 0-Rule: Majority class (Accuracy =          ) [slightly stronger 
baseline]



Summary
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● Many metrics:

○ Accuracy, TP, FP, Precision, Recall, AP/mAP

○ Class imbalance and decision-cost imbalance must 

be taken into account

● Confusion Matrix: Important to analyze and  refine 

solution.
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References and Reading

• Code
– https://scikit-learn.org/stable/modules/model_evaluation.html#classification-

metrics

https://scikit-learn.org/stable/modules/model_evaluation.html

