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Machine Learning

LEARNING [

ALGORITHMS ol Halel=

Study of Algorithmic methods that use data to improve their knowledge of a task
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An interview analogy

Collect worked out problems (Q, S are
both known)

Prepare on ALL the available problems.
Go for interview.

Collect worked out problems (Q,S are both known)
Randomly set aside a small number of problems.
Prepare on rest of the problems.

Take a mock interview containing all the ‘set aside’ problems.

Score answers and compare with solution.

Use mistakes to decide which topics to prepare better on.
Go for interview.
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Test set




The Train-Validation-Test paradigm

Original set

Training set Test set

Training set Validation set Test set




The Train-Validation-Test paradigm
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The Train-Validation-Test paradigm
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ML::Tasks = Predictive = Classification
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The Train-Validation-Test paradigm
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Performance Measures - Accuracy

(100 + 50)

Accuracy = 165 = 0.91 Predicted: | Predicted:
n=165 NO YES
. o . 10_|_5 Actual:
Misclassification = ( - ) = 0.09 NO 50 10
165
Actual:
YES 5 100




Pool of 100 patients’ data
used for validation of a
cancer prediction ML model
Prediction:
® 3 have cancer
® Rest (100-3=97)are
healthy.
Reality:
® 1 of the 3 did not actually
have cancer !
® 3 from 97 predicted
healthy actually have
cancer
Accutacy.=

n=___

Predicted:
NO

Predicted:
YES

Actual:
NO

Actual:
YES
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Pool of 100 patients’ data
used for validation of a
cancer prediction ML model
Prediction:
® 3 have cancer
® Rest (100-3=97) are healthy.
Reality:
® 1 of the 3 did not actually
have cancer !
® 3 from 97 predicted healthy
actually have cancer
Accuracy = (100-4) /100 =
96% !

n=___

Predicted:
NO

Predicted:
YES

Actual:
NO

Actual:
YES
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Pool of 100 patients’ data used for
validation of a cancer prediction ML
model
Prediction:
® 3 have cancer - selected for
chemotherapy
® Rest (100-3=97) are healthy.
Reality:
® 1 of the 3 did not actually have
cancer !
® 3 from 97 predicted healthy
actually have cancer - should
have been selected for
chemotherapy

Predicted: | Predicted:
n=___ NO YES
Actual:
NO
Actual:
YES
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Performance Measures - Accuracy

(100 + 50)

Accuracy = 165 = 0.91 Predicted: | Predicted:
n=165 NO YES
. o . 10_|_5 Actual:
Misclassification = ( - ) = 0.09 NO 50 10
165
Actual:
YES 5 100




Performance Measures — Accuracy, TPR, FPR

(100 + 50)

Accuracy = — = (.91
165

. e 10+5

Misclassification = (10+9) = (.09
165

. (10) -
FalsePositiveRate(FP) = w0 0.17

j
FalseNegativeRate(FN) = 1[[]]3 = 0.043

5

Predicted: | Predicted:
n=165 NO YES
Actual:
NO TN =50 FP=10 60
Actual:
YES FN=5 TP =100 105
55 110
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. ()
TrueNegativeRate(TN) ( o= 0.833

T'ruePositiveRate(T P) =

Predicted: | Predicted:
n=165 NO YES
Actual:
NO TN =50 FP=10 60
Actual:
YES FN=5 TP =100 105
55 110




Type Il error



Summary of Measures

Four outcomes of a classifier

true positive ﬂ false negative
false positive a true negative

Predicted: | Predicted:
n=165 NO YES
Actual:
NO TH=50 FP=10 &0
Actual:
YES FN=5 TP =100 105
55 110




Summary of Measures

Four outcomes of a classifier

true positive ﬂ false negative
false positive a true negative

Accuracy: (TP + TN) /(P + N)

A /L8

) T

% of correct predictions

Predicted: | Predicted:
n=165 NO YES
Actual:
NO TH=50 FP=10 &0
Actual:
YES FN=5 TP =100 105
55 110




Summary of Measures

Four outcomes of a classifier

true positive ﬂ false negative
false positive a true negative

Accuracy: (TP + TN) /(P + N)

&

> 4

Sensitivity: TP/ P

a5 /£

% of correct predictions

% of + class correctly predicted

[aka Recall / TPR]

Predicted: | Predicted:
n=165 NO YES
Actual:
NO TH=50 FP=10 &0
Actual:
YES FN=5 TP =100 105
55 110




Summary of Measures

Four outcomes of a classifier

true positive ﬂ false negative
false positive a true negative

Accuracy: (TP + TN) /(P + N)

&

> 4

Sensitivity: TP/ P

a5 /£

% of correct predictions

% of + class correctly predicted

[aka Recall / TPR]

Predicted: | Predicted:
n=165 NO YES
Actual:
NO TH=50 FP=10 &0
Actual:
YES FN=5 TP =100 105
55 110

Precision: TP/ (TP + FP)

&

correct prediction of + class
[aka Precision]



Summary of Measures

Four outcomes of a classifier

true positive ﬂ false negative
false positive a true negative

Accuracy: (TP + TN) /(P + N)

&

> 4

Sensitivity: TP/ P

a5 /£

% of correct predictions

% of — cl

% of + class correctly predicted

[aka Recall / TPR]

False positive rate: FP / N

ass incorrectly predicted

Predicted: | Predicted:
n=165 NO YES
Actual:
NO TH=50 FP=10 &0
Actual:
YES FN=5 TP =100 105
55 110

Precision: TP/ (TP + FP)

&

correct prediction of + class
[aka Precision]



Cancer-Prediction System
Precision =

Recall =

Accuracy =
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Cancer-Prediction System
Precision = 2/(2+1) = 67%
Recall = 2/(2+3) = 40%
Accuracy = (94+2)/100 = 96%
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Precision and Recall — examples

e A system which needs to launch a missile at a
terrorist hideout located in a dense urban area.
e Precision not 100% =» civilian casualties

e A system which needs to identify cancer-risk patients
e Recall not 100% =» some patients will die of cancer

30



Accuracy vs Precision vs Recall

e Accuracy: Performance w.r.t both classes
e Recall : Performancew.rt ‘+ class
e Precision: Reliability of predictions w.r.t ‘+’ class

Four outcomes of a classifier

true positive ﬂ false negative
false positive a true negative

Accuracy: (TP + TN)/ (P + N) Sensitivity: TP/ P Precision: TP / (TP + FP)

- A 4

% of correct predictions % of + class correctly predicted correct prediction of + class
[aka Recall / TPR] [aka Precision]



Utility and Cost

e Sometimes, there is a cost for each error
O E.g. Earthquake prediction
B False positive: Cost of preventive measures
B False negative: Cost of recovery

e Detection Cost (Event detection)
O COSt — CFP * FP + CFN * FN



Farmer Shri MoneyBags and ML-FruitPicker

MB : | want an automated fruit picker and packer. |
will pay an unholy amount for it.

You (having just finished this lecture) : Sure

You (Thinking): | love unholy amounts of money @)
(rapid cuts of time passing, you collecting data,
referring to SMAI slides, coding ; dramatic music in
background)



Farmer Shri MoneyBags and ML-FruitPicker

After 6 months ...

MB : Well ?

You : | have a High Precision ML-FruitPicker. But its Recall is 20% !

MB : (confused) Precision ? Recall ?

You : (thinking) Should I go over first 3 lectures of SMAI with MB ? He’ll
probably run away !

You : It rejects 80% of good, pickable fruit, but whatever it picks, those
fruits are good |

MB : I'll take your system. How do | transfer unholy amount of money to
you ?

You :

MB (seeing your shocked face) : See, in a batch of 100 fruits, 10 fruits are
usually bad. Among the 90 good ones, your system will select 18 of them
on average. But from any given selection, | pack only 8.



Accuracy vs Precision vs Recall

« Monitor Precision if a false positive carries higher cost.
o Monitor Recall if a false negative carries higher cost.

Four outcomes of a classifier

true positive ﬂ false negative
false positive a true negative

Accuracy: (TP + TN)/ (P + N) Sensitivity: TP/ P Precision: TP / (TP + FP)

0 negative (N)

% of correct predictions % of + class correctly predicted correct prediction of + class
[aka Recall / TPR] [aka Precision]



Accuracy vs Precision vs Recall

« Precision 2 Cost of inclusion
« Recall 2 Cost of exclusion

Four outcomes of a classifier

true positive ﬂ false negative
false positive a true negative

Accuracy: (TP + TN)/ (P + N)

& /£

- A 4

Sensitivity: TP/ P

A /L8

% of correct predictions

% of + class correctly predicted
[aka Recall / TPR]

Precision: TP/ (TP + FP)

-/

correct prediction of + class
[aka Precision]




Summary of Measures

Four outcomes of a classifier Predicted: | Predicted:
n=165 NO YES
true positive ﬂ false negative Actual:
fal - NO TN =50 FP=10 60
alse positive a true negative Actual:
YES FN=5 TP=100 105
55 110
Accuracy: (TP + TN) /(P + N) Sensitivity: TP/ P Precision: TP/ (TP + FP)

A /L%

A /L8

) T

% of correct predictions % of + class correctly predicted correct prediction of + class
[aka Recall / TPR]

False positive rate: FP/ N

% of — class incorrectly predicted



F1-score: A unified measure

e What to do when one classifier has better precision but
worse Recall, while other classifier behaves exactly
opposite?

O F-measure (Information Retrieval)
BF = "1 1

Recall Precision




Utility and Cost

e \What to do when one classifier has better Precision but
worse Recall, while other classifier behaves exactly

opposite?
O F-measure (Information Retrieval)
. F1 — 2

1 1
Recall Precision

- F1 measure punishes extreme values more !
- Definition of Recall and Precision have same numerator, different denominators. A sensible way to
combine them is harmonic mean.



| Supervised |
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Classification
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1 Multi-class : Multi-label
l

1-of-K n-of-K

E.g. graph/sequence



How to use 2-class measures for multi-class ?

« Convertinto 2-class problems !

- Average Precision, Recall etc.

‘- Avg. accuracy may not be very meaningful with
imbalanced class label distribution



Multi-class problems - Confusion

activity recognition from video
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Courtesy: vision.jhu.edu
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Multi-class Classification: Measures

- Mean <measure> +- standard deviation
- Median<measure> +- median absolute deviation

Spectral bands

Descriptor

RGB PCA RGB
Gist, 74.14 £1.93 | 77.76 & 2.62
MSIFT 88.92 £ 1.39 | 90.97 £ 1.81
MBoW 88.60 & 1.70 | 88.31 £ 1.38
cSIFT 88.17 &£ 1.17 | 88.76 £+ 1.74
rgSIFT 88.24 +1.89 | 87.71 +1.33
BoWV [g] 71.86 N/A
SPMK [12] 74.00 N/A
SPCK++ [8] 76.05 N/A
Dense SIFT [2] | 81.67 £ 1.23 N/A




Exam analogy: Did you prepare at least
a little ?

Original set

Training set Test set

Training set Validation set Test set

o Compute <Performance Measure> (e.g. Accuracy) for TRAINING SET
o Verify itis “decent”
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E.g. graph/sequence



Example-based

o Misthe numberof examples.

_Y'; isthe ground truth label assignment ofthe _it" example..
e Xiisthe _it" example.

e_hix;listhe predicted labelsforthe_it" example.

1 o |Yi N hlz;)]
Precision=_pn £~ |h(z;)| What fraction of labels are predicted correctly ?
li:|}}r’“|h[.a';f]| What % of ¢ label dicted 2
Recall=_n 22 [V at % of correct labels were predicted:

Accuracy = Fraction of samples predicted correctly
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https://i.stack.imgur.com/PbUbg.gif
https://i.stack.imgur.com/k1AER.gif

Baselines

* 0O cost-to-build classifiers
* Binary
— Equal # of samples / class 2 Random Guessing (50%
accuracy)

— Class imbalance
* — Guess according to class proportion (Accuracy =

* 0-Rule: Majority class (Accuracy = ) [slightly stronger
baseline]



Summary

e Many metrics:
O Accuracy, TP, FP, Precision, Recall, AP/mAP
O Class imbalance and decision-cost imbalance must
be taken into account

e Confusion Matrix: Important to analyze and refine
solution.



(O

A useful metric is both accurate (in
that it measures what it says it
measures) and aligned with your
goals.
Don't measure anything unless the
data helps you make a better
decision or change your actions.

~ Seth Godin




References and Reading

e Code

— https://scikit-learn.org/stable/modules/model evaluation.html#classification-
metrics



https://scikit-learn.org/stable/modules/model_evaluation.html

