
CSE/ECE-471: Statistical Methods in AI Spring 2020

Decision Tree
Prepared by: Sai Kiran Velankayala(2019900079), Pranshi Yadav(2019202004), Sasanka Chekuri(2019900015)

In this note, we discuss introduction to decision trees and identifying trees in classification problems.

1 Background and Introduction

So, far we have discussed about classification techniques in Machine Learning like K-nearest neighbours.
Lets discuss an example where nearest neighbours technique would face challenges and we would need a
better approach for classification.

In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision
making.

Features:

1. It is one of the most intuitive classifiers

2. It is easy to understand and construct as well

3. Surprisingly, it also works very well

There are various examples where decision tree can be used as a model for classification:

1. Banks (eg. whether to provide loan or not)

2. Credit approval

3. Fruits classification

4. Identify whether a customer is buyer or not

5. Classify whether a mushroom is edible or not

6. Used for better movie recommendation, where a decision tree of all the watch-list is made based on
the movies the user liked, and then a prediction is made as to what movie a user can watch next

2 The Vampire Analogy

Suppose, there’s a little database of samples of individuals who have been determined to be vampires
and not vampires as follows.

1

Topic Name 2

is Vampire ? Casts
Shadow
?

Eats
Garlic
?

Skin Complexion Accent

No ? Yes Pale None

No Yes Yes Rubby None

Yes ? No Rubby None

Yes No No Average Heavy

Yes ? No Average Odd

No Yes No Pale Heavy

No Yes No Average Heavy

No ? Yes Rubby Odd

**This data is for classroom illustration.In real world, good data sets doesn’t occur.

Given Table shows the data for classification of Vampires, based on the factors like Shadow, Garlic eating
habits, Skin Complexion and Accent.It would be difficult to use nearest neighbors technique with data
like this, due to the following problems.

1. This is not numerical data.

2. It’s not clear that all of these characteristics actually matter. So some characteristics may not
correspond to the output of the classification.

3. Some characteristics do matter, but they only matter part of the time.

4. And finally, there’s the matter of cost. Some of these tests may be more expensive to perform than
others.

In such cases, we opt for a different model.

The first step and most important step is to decide which attribute is most important and that it should
be the root node of the tree, and subsequently, we have to decide the attributes which are important for
the classification in the order of importance.
For a particular node, there are finite choices to move ahead in the tree. This is a Boolean classification,
so at the end of the decision tree, we would have two possible results (either they are a vampire or not).
So, each example input will classify as true(a positive example) or false (a negative example).

Here, ’+’ refers to positive, which means that a person is a vampire, and ’-’ refers to negative, which
means the person is not a vampire.

Topic Name 3

Shadow

+ +

- -

?

- - -

Y
es

+

N
o

Total elements in homogeneous sets: 4

Garlic

- - -

Y
es

+ + +

- -

N
o

Total elements in homogeneous sets: 3

Complexion

+ +

-

A
ve
ra
ge

- -

P
a
le

- -

+

R
ubby

Total elements in homogeneous sets: 2

Accent

+ +

-

N
on
e

- -

H
ea
v
y

- -

+

O
dd

Total elements in homogeneous sets: 0

Ideally, we’d like a test that will put all the vampires in one group and all the ordinary people in another. Now,
using greedy approach, lets pick the test with maximum homogeneous sets as root node.

So, we get ..

Shadow ?

+ +

- -

?

Not Vampire

Y
es

Vampire

No

For the shadow attribute “yes” and “no”, we can decide if a person is a vampire or not, but in case of “?” we
don’t know, so, we need to decide which attribute divides data well when shadow = ‘?’. For that, we need to
analyze other attributes while shadow is unknown. (that is, consider only those tuples where shadow is labeled
as ’?’)

Topic Name 4

Rebuilding the data table with rows when Shadow is unknown; we get ..

is Vampire ? Casts Shadow
?

Eats
Garlic
?

Skin Complexion Accent

No ? Yes Pale None

Yes ? No Rubby None

Yes ? No Average Odd

No ? Yes Rubby Odd

Garlic

- -

Ye
s

+ +

No

Total elements in homogeneous sets: 4

Complexion

-

Pa
le

+ -

R
u
d
d
y

+

Average

Total elements in homogeneous sets: 2

Accent

+ -

No
ne

+ -

O
d
d Heavy

Total elements in homogeneous sets: 0

Here we find that “Garlic?” attribute divides maximum elements, in fact, all elements in homogeneous sets.

So, our decision tree now looks like this,

Topic Name 5

Shadow ?

Garlic

Not Vampire

Y
es

Vampire

N
o

?

Not Vampire

Y
es

Vampire

No

Problems while working with pure set:
This tree looks simpler and we observe that the greedy approach is helping us to get better results. But, is that
the right way to do so?
No, because if the data-set is large, and there will be noise in the data, we need not end up with attributes
dividing into the homogeneous set, we may find for all attributes elements in the homogeneous set are 0.
There is also a possibility that we find one good separator but other attributes gets messed up and give very low
accuracy. While other permutations gives better accuracy. Hence, we need sets which are less distributed.

In such cases, how do we proceed to identify Trees ? Let’s revise about the concept called Entropy before
discussing the algorithmic approach.

3 Impurity functions

3.1 Entropy and Information gain

Entropy, as it relates to machine learning, is a measure of randomness in the information being processed.
The higher the entropy, the harder it is to draw any conclusion from the information.

Entropy can be defined as: E = −
∑N

i=1 pilog2(pi)

where, pi is the probability of each set in class

Let’s take an example of a two-class problem : + + - -

For this example, we can calculate entropy as:
E2 = −p1log2(p1) − p2log2(p2)
here, p1 represents positive class and p2 represents negative class
So, the probability of getting a positive answer is half (p1 = 2

4
= 1

2
)

Similarly for negative class, p2 = 2
4

= 1
2

Substituting these values in the entropy equation , we get,
E2 = − 1

2
log2(1

2
) − 1

2
log2(1

2
)

E2 = − 1
2
(−1) − 1

2
(−1) = 1

This is the max(worst) entropy one can get. It means that there is 50% chance of getting each class. Entropy
maximizes if data is distributed uniformly among classes.

Let’s take another example for two class problem: - - -

Topic Name 6

E2 = − 0
3
log2(0

3
) − 3

3
log2(3

3
)

E2 = −(0)log2(0) − (1)(0) = 0
Here, we get can clearly predict the solution.

Note - [High E - Uniform Distribution - Unpredictability increases]

figure- Entropy graph

The information gain is based on the decease in entropy after a data-set is split on an attribute. Constructing a
decision tree is all about finding the attribute that returns the highest information gain, i.e., the most homoge-
neous branch.
Steps to calculate information gain:

1. Calculate the entropy of the target(label)

2. Calculate the entropy of each branch of a split attribute. Then, calculate the weighted entropy sum of that
attribute. This is done for each attribute split.

3. Calculate Information gain for each split
Information gain = Entropy(target) - Weighted entropy sum
Information gain is calculated for each split.

4. Attribute with highest information gain is selected as next node for split.

5. A branch with Entropy 0 is a leaf node and those with Entropy greater than 0 needs further splitting.

6. Repeat the same process for all non-leaf branches

(Refer section 5 for example)

3.2 Gini Index

Gini Index is a metric to measure how often a randomly chosen element would be incorrectly identified. Thats
is, if we slect two items from a population at random then they must be of same class and the probability for
this is 1 if population is pure.
An attribute with lower Gini index should be preferred.
Gini Index= 1 −

∑c
i=1 pi

2

Steps to calculate Gini Index:

Topic Name 7

1. Calculate the Gini for sub-nodes using the above formula

2. Calculate Gini for split using weighted score of each node of that split

3. Compare the Gini of all split and choose the one with least value

For example, we want to segregate whether the student plays cricket or not. Here, we split on the basis of two
input variables, Gender and Class.

Now,
Split on Gender:

1. Gini for sub-node Female = 1- ((0.2)*(0.2) + (0.8)*(0.8)) = 1 - 0.68 = 0.32
(1- (success2 + fail2))

2. Gini for sub-node Male= 1 - ((0.65)*(0.65) + (0.35)*(0.35)) = 1 - 0.55 = 0.45

3. Weighted Gini for split Gender = (10
30

)*0.32 + (20
30

)*0.45 = 0.41

Split on Class:

1. Gini for sub-node class IX = 1- ((0.43)*(0.43) + (0.57)*(0.57)) = 1 - 0.51 = 0.49

2. Gini for sub-node class X= 1 - ((0.56)*(0.56) + (0.44)*(0.44)) = 1 - 0.51 = 0.49

3. Weighted Gini for split class = (14
30

)*0.49 + (16
30

)*0.49 = 0.49

From above, we can see that gender has less Gini value. So, we will split on the basis of gender here.

Topic Name 8

4 Analysis of impurity functions

Gini impurity measures how heterogeneous or mixed some value is over a set. In decision trees, we have to find a
criteria that make a set into more homogeneous subsets. Information gain is often used to describe this difference
that’s being maximized though that term goes with entropy. But it’s really entropy that is the alternative to
Gini impurity.The higher the score the higher the impurity and therefore the higher the information gain will be
when a split occurs.

5 Solution to ’Vampire or not’ problem using Information Gain

Now, we’ll see how information gain can be used to create decision tree.
We need to find attribute that returns the highest information gain or minimum disorder(Weighted Entropy
Sum). Lets calculate them for each of the attribute : Shadow, Garlic, Complexion, Accent, using the following
formula. Let P and N represent the number of ’+’ and ’-’.

Entropy (Ei) = − P
(P+N)

log
(

P
(P+N)

)
− N

(P+N)
log

(
N

(P+N)

)

Weighted Entropy Sum =
∑

WiEi ; Wi is the weight

Information Gain(Attribute) = Entropy of attribute − Weighted average of Entropy of each child set

Topic Name 9

Shadow ?

+ + - - - - - +

Yes
No?

P=2, N=2 P=0, N=3 P=1, N=0
E1 = −1

2 log 1
2 −

1
2 log

1
2

=⇒ E1 = 1

E2 = 0log 0
3 − 1log 3

3

=⇒ E2 = 0

E3 = 0log 0
1 − 1log 1

1

=⇒ E3 = 0

Weighted Entropy Sum = 4
8

∗ E1 + 3
8

∗ E2 + 1
8

∗ E3 = 1
2

Information Gain = 0.9544 − 0.5 = 0.4544

Complexion

+ + - - - - - +

Pale
RubbyAverage

P=2, N=1 P=0, N=2 P=1, N=2
E1 = −2

3 log 2
3 −

1
3 log

1
3

=⇒ E1 = 0.918

E2 = 0log 0
2 − 1log 2

2

=⇒ E2 = 0

E3 = − 1
3 log

1
3 −

2
3 log

2
3

=⇒ E3 = 0.918

Weighted Entropy Sum = 3
8

∗ E1 + 2
8

∗ E2 + 3
8

∗ E3 = 0.688

Information Gain = 0.9544 − 0.688 = 0.2656

Similarly, we get Weighted Entropy Sum of Garlic and Accent as 0.6 and 0.95 respectively, and the corresponding
Information Gain as 0.3544 and 0.004. Now lets pick the attribute Shadow as the root node since , its has the
maximum Information Gain.So choosing shadow as root attribute, we get ..

Shadow ?

Not vampire Vampire

Yes
No?

??

Now, We need to decide another attribute for Shadow = ‘?’. Again Rebuilding the data table with rows when
Shadow is unknown; we get ..

Topic Name 10

is Vampire ? Casts Shadow
?

Eats Garlic ?

No ? Yes

Yes ? No

Yes ? No

No ? Yes

Using the same approach discussed above, we get ..

Garlic ?

- - + +

NoYes

P=0, N=2 P=2, N=0

Entropy(Garlic when Shadow = ”?”) = 1

Weighted Average = 2
4

∗ E1 + 2
4

∗ E2 = 0

Information Gain = 1 − 0 = 1

E1 = − 0
2 log

0
2 −

2
2 log

2
2

=⇒ E1 = 0

E2 = − 2
2 log

2
2 −

0
2 log

0
2

=⇒ E2 = 0

We can see that the Information Gain is maximum (=1) for Garlic attribute when shadow is unknown(=?). So,
we pick Garlic as next attribute and our tree will look like this..

Garlic ?

NoYes

Shadow ?

Yes
No?

Not Vampire Vampire

Not Vampire Vampire

We need to note that this tree is exactly the same as the previous approach(greedy), because luckily at each step
we were able to find some attributes dividing into a homogeneous set, but the approach with Information Gain
is more robust, which can be applied to make a decision tree from a large data-set.

Topic Name 11

6 Decision Tree Regression

Decision tree regression observes features of an object and trains a model in the structure of a tree to predict
data in the future to produce meaningful continuous output.

For regression tree generation, we calculate the coefficient of deviation (Standard deviation/Mean) for each split.

Steps:

1. Calculate Standard deviation of the label(target)

S =

√∑
(x−x)2

n

2. Standard deviation of each attribute is calculated(for two values, attribute and label)
S(T,X) =

∑
c∈X (P (c))S(c)

3. For each attribute, calculate Standard Deviation Reduction as
SDR(T,X) = S(T) - S(T,X)

4. The attribute with the largest standard deviation reduction is selected for split.

5. The dataset is divided on the values of the selected attribute. This process is repeated for non-leaf branches.

We can stop the process when the Coefficient of deviation is below certain threshold. Finally, if the number of
instances is more than one at a leaf node, calculate the mean as the final predicted value.

Note: each side of split will be a different test.

Problem with the model: In some cases, even if one point is changed even a little, the tree changes significantly.

7 Random Forest overview

Random Forest grows many classification trees. If we want to classify a new object from an input vector, put
the vector into each tree of the forest. Each tree gives a classification, and we take tree votes from each tree and
get the most vote and classify the object in that class.

Grow k different trees:

1. Pick a random subset of train data (with replacement)

2. Pick d random attributes

3. Compute gain based on subset

4. Repeat k times

Random forests are among the most widely used machine learning algorithm, probably due to their relatively
good performance and ease of use (not much tuning required to get good results).

The random forest algorithm can be understood as bagging with decision trees,but instead of growing the decision
trees by basing the splitting criterion on the complete feature set, we use random feature subsets.

Why random forest may work better ? The random forest good performance may be explained by the
additional randomization that further diversifies the individual trees. Law of Large Numbers they do not over
fit.

Breiman’s random forest paper https://www.stat.berkeley.edu/ breiman/randomforest2001.pdf

The upper bound of the generalization error, where randomization of the feature sub spaces may decrease the
“strength” of the individual trees, but at the same time, it reduces the correlation of the trees.

To summarize random forest, we fit decision trees on different samples and for each decision tree, we select a
random subset of features at each node to decide upon the optimal split. while the size of the feature subset to

Topic Name 12

consider at each node is a hyper parameter that we can tune, a “rule-of-thumb” suggestion is to use NumFeatures
= log2m+ 1.

References

[1] Artificial Intelligence by Patrick Henry Winston, Link: https://courses.csail.mit.edu/6.034f/ai3/rest.pdf

