
CSE/ECE-471: Statistical Methods in AI Spring 2020

Formulation of Support Vector Machine (SVM)

Prepared by: Roll no.s 201599594, 2019201007, 2019201016

1 Introduction

Machine learning involves predicting and classifying data and to do so we employ various machine learning
algorithms according to the dataset.

SVM or Support Vector Machine is a linear model for classification and regression problems. It can solve
linear and non-linear problems and work well for many practical problems. The idea of SVM is simple:
The algorithm creates a line or a hyperplane which separates the data into classes.

The goal of SVM is to identify an optimal separating hyperplane which maximizes the margin between
different classes of the training data.

2 Theory

At first approximation what SVMs do is to find a separating line(or hyperplane) between data of two
classes. SVM is an algorithm that takes the data as an input and outputs a line that separates those
classes if possible.

Lets begin with a problem. Suppose you have a dataset as shown below and you need to classify the red
rectangles from the blue ellipses(let’s say positives from the negatives). So your task is to find an ideal
line that separates this dataset in two classes (say red and blue).

1

Topic Name 2

Find an ideal line/ hyperplane that separates this dataset into red and blue categories

But, as you notice there isn’t a unique line that does the job. In fact, we have an infinite lines that can
separate these two classes. So how does SVM find the ideal one???

Let’s take some probable candidates and figure it out ourselves.

Which line best separates the data??

If you selected the yellow line then congrats, because thats the line we are looking for. It’s visually quite
intuitive in this case that the yellow line classifies better. But, we need something concrete to fix our line.
The green line in the image above is quite close to the red class. Though it classifies the current datasets

Topic Name 3

it is not a generalized line and in machine learning our goal is to get a more generalized separator
because even a little Perturbation in points will cause Misclassification.

SVM’s way to find the best line According to the SVM algorithm we find the points closest to
the line from both the classes.These points are called support vectors. Now, we compute the distance
between the line and the support vectors. This distance is called the margin. Our goal is to maximize
the margin. The hyperplane for which the margin is maximum is the optimal hyperplane.

Optimal Hyperplane using the SVM algorithm

Thus SVM tries to make a decision boundary in such a way that the separation between
the two classes(that street) is as wide as possible.

Let’s consider a bit complex dataset, which is not linearly separable.

Non-linearly separable data

Topic Name 4

This data is clearly not linearly separable. We cannot draw a straight line that can classify this data.
But, this data can be converted to linearly separable data in higher dimension. Lets add one more
dimension and call it z-axis. Let the co-ordinates on z-axis be governed by the constraint,

z =
(
x2 + y2

)
So, basically z co-ordinate is the square of distance of the point from origin. Let’s plot the data on z-axis.

Dataset on higher dimension

Now the data is clearly linearly separable. Let the purple line separating the data in higher dimension
be z=k, where k is a constant. Since, z =

(
x2 + y2

)
we get k =

(
x2 + y2

)
which is an equation of a

circle. So, we can project this linear separator in higher dimension back in original dimensions using this
transformation.

Decision boundary in original dimensions

Topic Name 5

Thus we can classify data by adding an extra dimension to it so that it becomes linearly separable and
then projecting the decision boundary back to original dimensions using mathematical transformation.
But finding the correct transformation for any given dataset isn’t that easy. That’s where comes the
concept of Kernel’s.

3 What is a Hyperplane

In mathematics, a hyperplane H is a linear subspace of a vector space V such that the basis of H has
cardinality one less than the cardinality of the basis for V. In other words, if V is an n-dimensional
vector space than H is an (n-1)-dimensional subspace. Examples of hyperplanes in 2 dimensions are any
straight line through the origin. In 3 dimensions, any plane containing the origin. In higher dimensions,
it is useful to think of a hyperplane as member of an affine family of (n-1)-dimensional subspaces (affine
spaces look and behavior very similar to linear spaces but they are not required to contain the origin),
such that the entire space is partitioned into these affine subspaces. This family will be stacked along the
unique vector (up to sign) that is perpendicular to the original hyperplane. This ”visualization” allows
one to easily understand that a hyperplane always divides the parent vector space into two regions.

In machine learning, it may be useful to employ techniques such as support vector machines to learn
hyperplanes to separates the data space for classification. The most common example of hyperplanes
in practice is with support vector machines. In this case, learning a hyperplane amounts to learning a
linear (often after transforming the space using a nonlinear kernel to lend a linear analysis) subspace
that divides the data set into two regions for binary classification. If the dimensionality of the data set
is greater than 2, this may be performed multiple times to achieve a multi-way classification.

An image of a Hyperplane

Topic Name 6

4 Functional and Geometric margins

The functional margin in SVM, γ̂, is defined as:

γ̂ = di
(
wTxi + b

)
di is the output label associated with the input vector xi;

di = 1 if xi ∈ positive class, and
di = -1 if xi ∈ negative class

As seen earlier,

g(x) =
(
wTxi + b

)
where w is a weight vector that is orthogonal to the hyperplane, i.e., w tells us the direction of the
hyperplane, and b is the bias value, which indicates the distance of the hyperplane from the origin.
Here, if we were to replace w by 5w and b by 5b, (choosing an arbitrary scalar constant) then g(x) =(
5wTxi + 5b

)
, and this doesn’t make a difference to the value of g(x), because we simply need to satisfy

this condition:

g (x) ≥ γ, if the vector x ∈ positive class, and
g (x) ≤ −γ, if the vector x ∈ negative class.

That is, we are only bothered about the sign of the output to determine which class the training example
belongs to. This implies that we can scale w and b to any values, without making any difference in a
relative sense.
The geometric margin in SVM, γ, is defined as:

γ = di

((
w
‖w‖

)T
xi + b

‖w‖

)

Here,
(

w
‖w‖

)T
is simply a unit vector corresponding to the weight vector wT .

The geometric margin is also invariant to scaling of the parameters w and b; i.e., if we replace w with
2w and b with 2b, then the geometric margin does not change.
So, we can impose an arbitrary scaling constraint on w without changing anything important; for in-
stance, we can demand that ‖w‖ = 1, or |w1| = 5, and any of these can be satisfied simply by rescaling
w and b.

Topic Name 7

5 Finding the optimal margin (Optimal Hyperplane)

We assume that we are given a training set of data that is linearly separable; i.e., it is possible to separate
the positive and negative training examples using some separating hyperplane.

Definition 5.1. A hyperplane is called an optimal hyperplane, if it maximizes the geometric margin
between itself and the closest data points from both classes. These data points, which are the closest to
the hyperplane, are called support vectors.

Why do we need to find the optimal hyperplane, i.e., the one which gives the maximum margin? Because
this will reduce the chances of misclassification, i.e., a positive training example being predicted as
negative, or vice-versa. How can we find the optimal hyperplane? For this purpose, we pose the following
optimization problem:

max
γ,w,b

γ

subject to di
(
wTxi + b

)
≥ γ, i = 1, . . . , N

‖w‖ = 1

The first set of constraints (di
(
wTxi + b

)
≥ γ) means that for each training example (feature vector),

the functional margin di
(
wTxi + b

)
must be at least γ.

The second constraint, ‖w‖ = 1, makes the functional margin equal to the geometric margin, so this
guarantees that the geometric margin is at least γ.
However, ‖w‖ = 1, i.e.,

√
(w2

1 + w2
2 + · · ·w2

n) = 1 is a non-convex constraint, so it is not computationally

efficient to solve it directly. So, we use the idea that γ = γ̂
‖w‖ , (the geometric margin is obtained on

dividing the functional margin by the magnitude of the weight vector w) in order to convert the problem
into:

max
γ,w,b

γ̂

‖w‖
subject to di

(
wTxi + b

)
≥ γ, i = 1, . . . , N

However, now the objective function γ̂
‖w‖ is a non-convex function, so it is still not computationally

efficient to solve it directly. So, we now use the idea that we can scale the values of w and b, without
changing anything. We impose the scaling constraint that the functional margin of w, b with respect
to the training set must be 1, i.e., γ̂ = 1. We can ensure that γ̂ = 1 by scaling the values of w and b
appropriately (that is how the idea of scaling w and b is used here).

So now, our objective function is to maximize 1
‖w‖ , which is the same as minimizing ‖w‖. Why is that

so? Intuitively, ‖w‖ is always positive (because calculating magnitude involves squaring the vector’s
components, then adding them up and taking square root), and as we increase the value of the denom-
inator, the value of 1

‖w‖ will decrease. Since we want to maximize (increase) the value of 1
‖w‖ , we need

to decrease the value of ‖w‖.

Similarly, minimizing ‖w‖ is the same as minimizing ‖w‖2. So we can re-write the optimization problem
as:

min
γ,w,b

φ (w) =
1

2
‖w‖2

subject to di
(
wTxi + b

)
≥ 1, i = 1, . . . , N

Topic Name 8

We’ve multiplied the objective function by 1
2 just for mathematical convenience, to make calculations

easier while differentiating later. Why is it ok to multiply by 1
2 ? Consider an example – the minimum

value of x2 is the same as the minimum value of 1
2x

2, i.e., x = 0.
So finally, the problem has been transformed to a form that can be solved efficiently. It is now a quadratic,
convex optimization problem, which has only linear constraints.

6 VC dimension and Vapnik’s equation

VC (Vapnik–Chervonenkis) dimension signifies the maximum no. of classes or collections into which a
set of points can be classified. If we can find a set of ’n’ points in such a way that it can be shattered by
a classifier and we can not find any set of ’n+1’ points that can be also shattered then the VC dimension
of the set is said to be ’n’. Putting in another way, if a classifier can correctly classify all the 2n possible
labeling of a set of ’n’ points and for a set of ’n+1’ points there is at least one labeling order in which
the classifier can not separate all the points correctly then the VC dimension of the set is said to be ’n’.
Shatter is a concept used in VC-theory. If A is a set and C is a class or collection of sets then C is
said to shatter the set A if for each subset ’S’ of A, there is some element ’c’ of C such that S = c ∩A.
Equivalently we can say that C shatter A when their intersection is equal to the power set of A,i.e.,
P (A) = {c ∩A|c ∈ C}. A set A is assumed to be finite because, normally we are interested in shattering
of finite sets of data points. If arbitrarily large subsets can be shattered, the VC dimension will be ∞.
VC dimension is a concept from computational learning theory that formally quantifies the power of a
classification algorithm. The VC dimension of a classifier as defined by Vapnik and Chervonenkis is the
cardinality (size) of the largest set of points that the classification algorithm can shatter.

In classification tasks a discriminant machine learning technique aims at finding a discriminant function
that can correctly predict predict labels for newly acquired instances. A discriminant classification
function takes a data pint ’x’ and assigns it to one of the different classes that are part of the classification
task. Discriminant approaches require fewer computational resources and less training data, especially
for multidimensional feature space and when only posterior probabilities are needed. From a geometric
perspective, learning a classifier is equivalent to finding the equation for a multidimensional surface
that best separates the different classes in the feature space. SVM is a discriminant technique, and,
because it solves convex optimization problem analytically, it always returns the same optimal hyperplane
parameters. If many hyperplanes can be learnt during the training phase, only the optimal one is retained.
This is because the training is practically performed on samples of the population even though the test
data may not exhibit the same distribution as the training set.When trained with data that are not
representative of the overall data population, hyperplanes are prone to poor generalization.

SVM is deeply rooted in the principles of statistics, optimization, and machine learning.It relies on the
complexity of the hypothesis space and emperical error which is a measure of how well the model fits
the training data.

Vapnik-Chervonenkis (VC) theory proves that a VC bound on the risk exists. VC is a measure of the
complexity of the hypothesis space. The VC dimension of a hypothesis H relates to the maximum number
of points that can be shattered by H. H shatters N points if it can correctly separates all the positive
instances from the negative ones. So, the VC capacity is equal to the number of training points N that
the model can separate into 2N different labels. This capacity is related to the amount of training data
available. The VC dimension, h, affects the generalization error, as it is bounded by ||w||, where w is
the weight vector of the separating hyperplane and the radius of the smallest sphere R that contains all
the training data points.

The bound on expected loss is given by:

R(α) ≤ Rtrain(α) +
√

f(h)
N

Here h is the VC dimension, αissomeparameteroravectorofadjustableparametersonwhichtrainingisdone,R(α)
is the test loss or error, Rtrain(α) is training error or loss, N is the no. of training data points. The

Topic Name 9

function f(h) is given by:

f(h)=h+hlog(2N)−hlog(h)−C

where C is some constant.

The test error is given by:

R(α) = E[
1

2
|y − f(x, α)]

The train error is given by:

Rtrain(α) =
1

R

R∑
k=1

1

2
|yk − f(xk, α)|

To reduce the test error, the training error should be kept as low as possble, say 0 (zero), and then we
should minimise the VC dimension h.

Considering the relative margin ρ
D , where ρ is the margin, D is the Data Diameter, the relation for h is

given by:

h ≤ min{d, dD
2

ρ2
e}+ 1

Topic Name 10

7 Solving optimization problems using Lagrange’s method

We’re given a problem of this form:

min
w
f (w)

subject to hi (w) = 0, i = 1, . . . ,m

Then, we define an equation called the Lagrangian, as:

L (w,α) = f (w) +

m∑
i=1

αihi (w)

So, the Lagrangian is the objective function f (w) added with the sum of each constraint multiplied
by a scalar called Lagrangian multiplier, denoted by αi here. The next step is to calculate partial
derivatives of the function L w.r.t w and α, equate them to 0, and find the values of w and α.
Note: The constraints need not always be equations, they can represent inequalities too. In this case,
we would use a different notation for the Lagrangian multiplier, say, β, and multiply each inequation by
β.
We can consider this as the primal form of the optimization problem, where we need to minimize w.r.t
w.

According to Lagrange’s theory, we can convert a problem in the primal form into its dual form, where
the objective function would be a function of the Lagrangian multipliers α and β (β is needed in case
there are any inequations), and we would have to maximize the objective function w.r.t α and β. (For
more details, please read reference [2]).

Under certain conditions, the optimal solution to the primal form leads to an optimal solution for the
dual form of the problem and vice-versa, so in this case, if the dual form is easier to solve, we can solve
the dual form instead of the primal form.

Let w∗ be the solution to the primal form of the problem, and let α∗ and β∗ be the solution to the
dual form of the problem. Then, w∗, α∗ andβ∗ satisfy the Karush-Kuhn-Tucker (KKT) conditions,
which are:

∂

∂wi
L (w∗, α∗, β∗) = 0, i = 1, . . . , n

∂

∂βi
L (w∗, α∗, β∗) = 0, i = 1, . . . , l

α∗i gi (w∗) = 0, i = 1, . . . , k

gi (w∗) ≤ 0, i = 1, . . . , k

α∗ ≥ 0, i = 1, . . . , k

Here, gi (w∗) represents a set of constraints.

Topic Name 11

8 Applying Lagrange’s method to SVM

From the quadratic convex optimization problem obtained for SVM earlier, using the set of constraints,
let:

gi (w) = 1− di
(
wTxi + b

)
≤ 0

According to the 3rd KKT condition listed above, if α∗i > 0, then gi (w∗) = 0. Using our definition
of gi (w), gi (w) will be 0 for only those training examples, whose functional margin is exactly equal to
1. These points are support vectors, as explained in definition 4.1. This implies that αi > 0 only for
support vectors.

We construct the Lagrangian for the optimization problem as:

J(w,α, b) =
1

2
‖w‖2 +

N∑
i=1

αi
(
1− di

(
wTxi + b

))
subject to αi ≥ 0 ∀i

∴ J(w,α, b) =
1

2
‖w‖2 −

N∑
i=1

αidi
(
wTxi + b

)
+

N∑
i=1

αi (1)

subject to αi ≥ 0 ∀i

To find the dual form of the problem (which is easier to solve), we need to minimize J(w,α, b) w.r.t.
wandβ, while keeping α fixed. So now we use the step of Lagrange’s method that involves finding partial
derivatives and equating them to 0.

∂J

∂w
= 0

∴
2

2
w −

N∑
i=1

αidixi + 0 = 0

∴ w =

N∑
i=1

αidixi (2)

∂J

∂b
= 0

∴0− 0 +

N∑
i=1

αidi + 0 = 0

∴
N∑
i=1

αidi = 0 (3)

Topic Name 12

We now substitute equation (3) in equation (1),

J(w,α, b) =
1

2
‖w‖2 −

N∑
i=1

αidiw
Txi −

N∑
i=1

αidib+

N∑
i=1

αi

∴ J(w,α, b) =
1

2
‖w‖2 −

N∑
i=1

αidiw
Txi +

N∑
i=1

αi

Substituting equation (2) in the above equation,

J(w,α, b) =
1

2
wTw − wTw +

N∑
i=1

αi

∴ J(w,α, b) =

N∑
i=1

αi −
1

2
wTw

∴ J(w,α, b) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjdidjx
T
i xj

This equation is the dual form of the quadratic optimization problem. We pose the problem properly,
along with constraints:

max
α

Q (α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjdidjx
T
i xj

subject to αi ≥ 0, i = 1, . . . , N

N∑
i=1

αidi = 0

Now, once we find the values of αis that maximize W (α), then we can use equation (2) to find the
optimal value of w.
The values of αi can be found using a QP (Quadratic Programming) solver — a software meant for
solving optimization problems (such software usually requires the problem to be in convex form and
have linear constraints), and the software might employ some algorithm such as SMO (sequential minimal
optimization).

Once we have the optimal value of the weight vector w, we can get the optimal value of bias b in this way:

bopt = 1− wToptx

, since wToptx+ bopt = 1. Here, for x, we can take any training example which is a support vector, so that

the value of α > 0. That is also the reason why we have equated wToptx+ bopt to 1, because we take x as
a support vector, for which the functional margin is exactly 1.

Topic Name 13

The process of solving the dual form of the problem

9 Using SVM for prediction on test data

Once we have found the optimal values of w and b for a training dataset, we can use them to predict
whether a new point x belongs to the positive class or to the negative class. First, we need to calculate
g(x) =

(
wTx+ b

)
, and then if g(x) > 0, then we predict that x belongs to the positive class, else it

belongs to the negative class.

However, using equation (2), we can write the equation for the classification decision as:

wTx+ b =

(
N∑
i=1

αidixi

)T
x+ b

∴ wTx+ b =

N∑
i=1

αidi (xix) + b

This shows that, since we have the values of αi, so to make a prediction, we don’t even need to use the
value of w, we simply need to take a dot product between the new training example x, and the points
xi in the training set.

Importantly, αi will be 0 for all xi other than the support vectors, since αi > 0 only for support vectors,
as explained earlier. This implies that we only need to take the dot product between the new
training example x and each of the support vectors, in order to make a prediction.

Topic Name 14

10 Example of SVM

Suppose we are given the following positively labeled data points in <2 :{(
3
1

)
,

(
3
−1

)
,

(
6
1

)
,

(
6
−1

)}
and the following negatively labeled data points in <2:{(

1
0

)
,

(
0
1

)
,

(
0
−1

)
,

(
−1

0

)}

We can plot them like this:

Plotting the given positive and negative training examples

Here, the blue points represent positive training examples, and the red points represent negative training
examples.

We want to find a simple SVM that accurately discriminates between the two classes. Since the data is
linearly separable, we can use a linear SVM (using the kernel trick is not required here).

Since the blue points and red points are neatly separated in this simple example, we just need to find
a line(hyperplane) that lies between these 2 groups. As can be seen in the graph, the support vectors
(points which would be the closest to the hyperplane) are the points (1, 0), (3,1) and (3, -1).
Let: {

s1 =

(
1
0

)
, s2 =

(
3
1

)
, s3 =

(
3
−1

)}
We will now use vectors augmented with a 1 as a bias input, and for clarity we will differentiate these
with an over-tilde. So, if s1 = (10), then s̃1 = (101). Our task is to find values for the αi such that

α1s̃1 · s̃1 + α2s̃2 · s̃1 + α3s̃3 · s̃1 = −1

α1s̃1 · s̃2 + α2s̃2 · s̃2 + α3s̃3 · s̃2 = +1

α1s̃1 · s̃3 + α2s̃2 · s̃3 + α3s̃3 · s̃3 = +1

Topic Name 15

How did we get these equations? By using
∑N
i=1 αidi (xix) + b. Note that in this example we have

included the bias values in the feature vectors. Also, in the first equation, we have factored out di = −1
from each of the 3 terms, and then multiplied both sides of the equation by -1.

In the 2nd and 3rd equations, di = 1 anyway, so even on factoring out, the RHS remains 1.

Solving these equations:

α1

 1
0
1

 1
0
1

+ α2

 3
1
1

 1
0
1

+ α3

 3
−1
1

 1
0
1

 = −1

α1

 1
0
1

 3
1
1

+ α2

 3
1
1

 3
1
1

+ α3

 3
−1
1

 3
1
1

 = +1

α1

 1
0
1

 3
−1
1

+ α2

 3
1
1

 3
−1
1

+ α3

 3
−1
1

 3
−1
1

 = +1

Computing the dot product of each pair of vectors, we get:

2α1 + 4α2 + 4α3 = −1

4α1 + 11α2 + 9α3 = +1

4α1 + 9α2 + 11α3 = +1

Solving this system of equations gives α1 = −3.5, α2 = 0.75 and α3 = 0.75.

Now that we have the αi, how do we find the hyperplane that discriminates the positive from the negative
examples? It turns out that:

w̃ =
∑
i

αis̃i

= −3.5

 1
0
1

+ 0.75

 3
1
1

+ 0.75

 3
−1

1

=

 1
0
−2

Finally, since our vectors are augmented with a bias, the last entry in w̃ is the hyperplane offset b and

so we write the separating hyperplane equation y = wx+ b as w =

(
1
0

)
and b = −2.

We can plot the hyperplane this way:

Topic Name 16

Plotting the equation of the hyperplane (SVs = Support Vectors)

References

[1] Lecture notes on SVM, made by the authors of this document.

[2] Lecture notes on SVM by Andrew Ng : http://cs229.stanford.edu/notes/cs229-notes3.pdf

[3] An example of SVM: http://axon.cs.byu.edu/Dan/678/miscellaneous/SVM.example.pdf

[4] https://medium.com/data-science-group-iitr/support-vector-machines-svm-unraveled-e0e7e3ccd49b

[5] https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989

[6] http://fuzihao.org/blog/2017/11/18/SVM-Revisit/

