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1 What is Wrong with Linear Regression for Classification ?

The linear regression model can work well for regression, but fails for classification. Why is that? In case
of two classes, you could label one of the classes with 0 and the other with 1 and use linear regression.
Technically it works and most linear model programs will spit out weights for you. But there are a few
problems with this approach:

A linear model does not output probabilities, but it treats the classes as numbers (0 and 1) and fits the
best hyper-plane (for a single feature, it is a line) that minimizes the distances between the points and
the hyper-plane. So it simply interpolates between the points, and you cannot interpret it as probabilities.

A linear model also extrapolates and gives you values below zero and above one. This is a good sign
that there might be a smarter approach to classification.

Since the predicted outcome is not a probability, but a linear interpolation between points, there is no
meaningful threshold at which you can distinguish one class from the other.

The higher the value of a feature with a positive weight, the more it contributes to the prediction of a
class with a higher number, even if classes that happen to get a similar number are not closer than other
classes.

A linear model classifies tumors as malignant (1) or benign (0) given their size. The lines show the
prediction of the linear model. For the data on the left, we can use 0.5 as classification threshold. After
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introducing a few more malignant tumor cases, the regression line shifts and a threshold of 0.5 no longer
separates the classes. Points are slightly jittered to reduce over-plotting.

If we use linear regression for this problem, there is a need for setting up a threshold based on which
classification can be done. Say if the actual class is malignant, predicted continuous value 0.4 and
the threshold value is 0.5, the data point will be classified as not malignant which can lead to serious
consequence in real time. From this example, it can be inferred that linear regression is not suitable for
classification problem. Linear regression is unbounded, and this brings logistic regression into picture.

Let us revisit the tumor size example again. But instead of the linear regression model, we use the
logistic regression model:

Logistic Regression is used when the dependent variable(target) is categorical.

We could approach the classification problem ignoring the fact that y is discrete-valued, and use our old
linear regression algorithm to try to predict y given x. However, it is easy to construct examples where
this method performs very poorly. Intuitively, it also doesn’t make sense for hθ(x) to take values larger
than 1 or smaller than 0 when we know that y ε { 0,1 } .
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To fix this, let’s change the form for our hypotheses hθ(x). We will choose

is called the logistic function or the sigmoid function. Here is a plot showing g(z):

Notice that g(z) tends towards 1 as z→+∞, and g(z) tends towards 0 as z→−∞. Moreover, g(z), and
hence also h(x), is always bounded between 0 and 1. Before moving on, here’s a useful property of the
derivative of the sigmoid function, which we write as g′ :

So, given the logistic regression model, how do we fit θ for it? We need to maximize the probability. Let’s
endow our classification model with a set of probabilistic assumptions, and then fit the parameters via
maximum likelihood.

Let us assume that

Note that this can be written more compactly as
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Assuming that the m training examples were generated independently(hence, taking product of each
sample of data), we can then write down the likelihood of the parameters as

Taking log, for mathematical convenience,

Written in vectorial notation, our updates will therefore be given by :

(Note the positive rather than negative sign in the update formula, since we’re maximizing, rather than
minimizing, a function now.) Let’s start by working with just one training example (x, y), and take deriva-
tives to derive the stochastic gradient ascent rule

Above, we used the fact that g′(z) = g(z)g(1− z). This therefore gives us the stochastic gradient ascent
rule

2 Advantages and Disadvantages of Logistic Regression

• Many of the pros and cons of the linear regression model also apply to the logistic regression
model. Logistic regression has been widely used by many different people, but it struggles with its
restrictive expressiveness (e.g. interactions must be added manually) and other models may have
better predictive performance.
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• Another disadvantage of the logistic regression model is that the interpretation is more difficult
because the interpretation of the weights is multiplicative and not additive.

• Logistic regression can suffer from complete separation. If there is a feature that would perfectly
separate the two classes, the logistic regression model can no longer be trained. This is because
the weight for that feature would not converge, because the optimal weight would be infinite. This
is really a bit unfortunate, because such a feature is really useful. But you do not need machine
learning if you have a simple rule that separates both classes. The problem of complete separation
can be solved by introducing penalization of the weights or defining a prior probability distribution
of weights.

• On the good side, the logistic regression model is not only a classification model, but also gives
you probabilities. This is a big advantage over models that can only provide the final classifica-
tion. Knowing that an instance has a 99 % probability for a class compared to 51% makes a big
difference.

• Logistic regression can also be extended from binary classification to multi-class classification.
Then it is called Multinomial Regression.

3 Multinomial Logistic Regression

• Multinomial logistic regression (often just called ’multinomial regression’) is used to predict a nom-
inal dependent variable given one or more independent variables.

• It is sometimes considered an extension of binomial logistic regression to allow for a dependent
variable with more than two categories.

• As with other types of regression, multinomial logistic regression can have nominal and/or contin-
uous independent variables and can have interactions between independent variables to predict
the dependent variable.

• It is a modification of logistic regression using the softmax function instead of the sigmoid function
the cross entropy loss function. The softmax function squashes all values to the range [0,1] and
the sum of the elements is 1.

• Cross entropy is a measure of how different 2 probability distributions are to each other. If p and q
are discrete we have :

• This function has a range of [0,∞] and is equal to 0 when p = q and infinity when p is very small
compared to q or vice versa. For an example x, the class scores are given by vector z = Wx+ b,
where W is a C×M matrix and b is a length C vector of biases. We define the label y as a one-hot
vector equal to 1 for the correct class c and 0 everywhere else. The loss for a training example x
with predicted class distribution y and correct class c will be :
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• As in the binary case, the loss value is exactly the negative log probability of a single example
x having true class label c. Thus, minimizing the sum of the loss over our training examples is
equivalent to maximizing the log likelihood. We can learn the model parameters W and b by
performing gradient descent on the loss function with respect to these parameters.

• Now, there are two common methods to perform multi-class classification using the binary classifi-
cation logistic regression algorithm: one-vs-all and one-vs-one. We are going to discuss one-vs-all
classification.

4 One-vs-All Classification

• Suppose we have a classifier for sorting out input data into 3 categories, 1.class 1 (4), 2. class 2
(�), 3. class 3(×).

• We may turn this problem into 3 binary classification problems (i.e. where we predict only y ε {0,1})
to be able to use classifiers such as Logistic Regression.

• We take values of one class and turn them into positive examples, and the rest of classes - into
negatives

• Step 1 - 4 are positive, and the rest are negative - and we run a classifier on them.
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and we calculate h(1)θ (x) for it

• Step 2 - next we do same with �: make them positive, and the rest - negative

and we calculate h(2)θ (x)

• Step 3 - finally, we make × as positive and the rest as negative and calculate h(3)θ (x)

• So we have fit 3 classifiers: h(i)θ (x) = P (y = i|x; θ), i = 1, 2, 3

• Now, having calculated the vector hθ(x) = [h
(1)
θ (x), h(2)θ (x), h

(3)
θ (x)] we just pick up the maximal

value i.e. we choose maxi h
(i)
θ (x)

5 Introduction to Artificial Neural Networks

Artificial Neural Networks(ANN) is an information processing paradigm that is inspired by the way the
biological nervous system such as brain process information. It is composed of large number of highly
interconnected processing elements(neurons) working in unison to solve a specific problem. Each unit
implements simple function.
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For the above general model of artificial neural network, the net input can be calculated as follows:

yin = x1.w1 + x2.w2 + x3.w3....xm.wm

yin = Σmixi.wi

The output can be calculated by applying the activation function over the net input: Y = F (yin)

The perceptron model is a more general computational model . It takes an input, aggregates it (weighted
sum) and returns 1 only if the aggregated sum is more than some threshold else returns 0. A single
perceptron can only be used to implement linearly separable functions. It takes both real and Boolean
inputs and associates a set of weights to them, along with a bias (the threshold thing I mentioned above).
We learn the weights, we get the function.

Following are the major components of a perceptron:

• Input: All the features become the input for a perceptron. We denote the input of a perceptron
by [x1, x2, x3, .., xn], where x represents the feature value and n represents the total number of
features. We also have special kind of input called the bias. In the image, we have described the
value of the BIAS as w0.

• Weights: The values that are computed over the time of training the model. Initially, we start the
value of weights with some initial value and these values get updated for each training error. We
represent the weights or perceptron by [w1, w2, w3, .., wn].

• Step/activation function: The role of activation functions is to make neural networks nonlinear.
For linear classification, for example, it becomes necessary to make the perceptron as linear as
possible.

• Bias: A bias neuron allows a classifier to shift the decision boundary left or right. In algebraic
terms, the bias neuron allows a classifier to translate its decision boundary. It aims to ”move every
point a constant distance in a specified direction.” Bias helps to train the model faster and with
better quality.

• Weighted summation: Weighted summation is the sum of the values that we get after the multipli-
cation of each weight [wn] associated with the each feature value [xn].

• Output: The weighted summation is passed to the step/activation function and whatever value we
get after computation is our predicted output.

• Description:

– Firstly, the features for an example are given as input to the perceptron.
– These input features get multiplied by corresponding weights (starting with initial value).



– The summation is computed for the value we get after multiplication of each feature with the
corresponding weight.

– The value of the summation is added to the bias.
– The step/activation function is applied to the new value.

Perceptron Learning Rule : This rule is an error correcting the supervised learning algorithm of single
layer feed-forward networks with linear activation function, introduced by Rosenblatt. As being super-
vised in nature, to calculate the error, there would be a comparison between the desired/target output
and the actual output. If there is any difference found, then a change must be made to the weights of
connection.

Mathematical Formulation : Suppose we have ‘n’ number of finite input vectors, xn, along with its de-
sired/target output vector tn, where n = 1 to N .

Now the output ‘y’ can be calculated, as explained earlier on the basis of the net input, and activation
function being applied over that net input can be expressed as follows:

y = f(yin) =

{
1, yin > θ

0, yin θ
(1)

Where θ is threshold.

The updating of weight can be done in the following two cases

Case I when t 6= y, then

w(new) = w(old) + tx (2)

Case II when t = y, then there is no change in weight.

References

[1] Lecture notes on Logistic Regression and Artificial Neural Networks, made by the authors of this
document.

[2] Lecture notes by Andrew Ng,http://cs229.stanford.edu/notes/cs229-notes1.pdf

[3] https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc

[4] https://statistics.laerd.com/spss-tutorials/multinomial-logistic-regression-using-spss-statistics.php

[5] https://medium.com/@jjw92abhi/is-logistic-regression-a-good-multi-class-classifier-ad20fecf1309

[6] http://mlwiki.org/index.php/One-vs-All Classification

9


