
CSE/ECE-471: Statistical Methods in AI Spring 2020

Multi Layer Perceptron
Upinder Singh(2019201083) Diksha Singh(2019201066) Shanu Shrivastava(2019202005)

1 Perceptron

The perceptron is the building block of neural network. It computes dot product of Weight vector with
input and applies a step function to output. It is similiar to Logistic regression except it uses step
function instead of sigmoid function at output. Constant 1 is introduced in the input layer to introduce
a bias.

Fig-1: Basic Model

1



Multi Layer Perceptron 2

2 Perceptron Learning

Once the weight are computed using (WTX + b), the weights are updated using below rule:

1. For correctly labelled inputs, don’t update weight.
2. If a label is incorrectly classifed as negative label, add positive X, otherwise add -X.

Repeat untill convergence.

3 Multi Layer Perceptron

Problem with perceptron was that it wasn’t sufficient to learn model for complex distributions.

Perceptron being too simplistic for real word scenarios, Multi layer perceptron was proposed to over-
come the limitations of a single perceptron model. The idea was to stack multiple perceptron layers
together to form a network of perceptrons, where each input was feed from output of previous layer
perceptrons(except Input layer). Stacking layers could only be termed usefull if we introduce some non-
linearity(otherwise, the output would be just some linear combination of input). Therfore, we added
activation functions at the output of each perceptron instead of step function(we now call this a
neuron).

Fig-3: Multi-Layer Perceptron

Basic features of a multi layer perceptron:-



Multi Layer Perceptron 3

1. We require activation function to be differentiable with respect to weight.

2. The network contains one or more layers that are hidden from both input and output nodes.

Training of a Multi layer perceptron proceeds in two phases:

1. Forward phase : Weights of the network are fixed and the input signal is propagated through
the network layer by layer until it reaches the output.

2. Backward phase : Error signal produced by comparing the output of the network and the desired
response is propagated through the network layer by layer in backward direction.

3.1 Forward Pass

Consider the example below, with two inputs, two hidden neurons, two output neurons. Additionally,
the hidden and output neurons will include a bias.

In order to have some numbers to work with, here are the initial weights, the biases, and training
inputs/outputs:



Multi Layer Perceptron 4

The goal is to optimize the weights so that the neural network can learn how to correctly map arbitrary
inputs to outputs. given inputs X = [0.05, 0.10], we want the neural network to output 0.01 and 0.99.

To begin, lets see what the neural network currently predicts given the weights and biases above and
inputs of 0.05 and 0.10. To do this we’ll feed those inputs forward though the network.

We figure out the total net input to each hidden layer neuron, squash the total net input using an
activation function (here we use the logistic function), then repeat the process with the output layer
neurons. Here’s how we calculate the total net input for h1:

neth1 = w1 ∗ i1 + w2 ∗ i2 + b1 ∗ 1

neth1 = 0.15 ∗ 0.05 + 0.2 ∗ 0.1 + 0.35 ∗ 1 = 0.3775

We then squash it using the logistic function to get the output of (h1):

outh1 =
1

1 + e−neth1
=

1

1 + e−0.3775
= 0.593269992

Carrying out the same process for h2 we get:

outh2 = 0.596884378

We repeat this process for the output layer neurons, using the output from the hidden layer neurons as
inputs. Here’s the output for o1 : neto1 = w5 ∗ outh1 + w6 ∗ outh2 + b2 ∗ 1

neto1 = 0.4 ∗ 0.593269992 + 0.45 ∗ 0.596884378 + 0.6 ∗ 1 = 1.105905967

outo1 =
1

1 + e−neto1
=

1

1 + e−1.105905967
= 0.75136507

And carrying out the same process for o2 we get:

outo2 = 0.772928465

Calculating the Total Error

We can now calculate the error for each output neuron using the squared error function and sum them
to get the total error:

Etotal =
∑ 1

2
(target− output)2



Multi Layer Perceptron 5

For example, the target output for o1 is 0.01 but the neural network output 0.75136507, therefore its
error is:

Eo1 =
1

2
(targeto1 − outo1)2 =

1

2
(0.01− 0.75136507)2 = 0.274811083

Repeating this process for o2 (remembering that the target is 0.99) we get:

Eo2 = 0.023560026

The total error for the neural network is the sum of these errors:

Etotal = Eo1 + Eo2 = 0.274811083 + 0.023560026 = 0.298371109

3.2 The Backwards Pass

Our goal with backpropagation is to update each of the weights in the network so that they cause the
actual output to be closer the target output, thereby minimizing the error for each output neuron and
the network as a whole.

Output Layer

Consider w5. We want to know how much a change in w5 affects the total error, aka ∂Etotal

∂w5
. By

applying the chain rule we know that:

∂Etotal

∂w5
=
∂Etotal

∂outo1
∗ ∂outo1
∂neto1

∗ ∂neto1
∂w5

Visually, here’s what we’re doing:

We need to figure out each piece in this equation.
First, how much does the total error change with respect to the output?

Etotal =
1

2
(targeto1 − outo1)2 +

1

2
(targeto2 − outo2)2

∂Etotal

∂outo1
= 2 ∗ 1

2
(targeto1 − outo1)2−1 ∗ −1 + 0

∂Etotal

∂outo1
= −(targeto1 − outo1) = −(0.01− 0.75136507) = 0.74136507

Note: When we take the partial derivative of the total error with respect to outo1, the quantity
1
2 (targeto2−outo2)2 becomes zero because outo1 does not affect it which means we’re taking the derivative



Multi Layer Perceptron 6

of a constant which is zero.

Next, how much does the output of o1 change with respect to its total net input?

The partial derivative of the logistic function is the output multiplied by 1 minus the output:

outo1 =
1

1 + e−neto1

∂outo1
∂neto1

= outo1(1− outo1) = 0.75136507(1− 0.75136507) = 0.186815602

Finally, how much does the total net input of o1 change with respect to w5?

neto1 = w5 ∗ outh1 + w6 ∗ outh2 + b2 ∗ 1

∂neto1
∂w5

= 1 ∗ outh1 ∗ w(1−1)
5 + 0 + 0 = outh1 = 0.593269992

Putting it all together:
∂Etotal

∂w5
=
∂Etotal

∂outo1
∗ ∂outo1
∂neto1

∗ ∂neto1
∂w5

∂Etotal

∂w5
= 0.74136507 ∗ 0.186815602 ∗ 0.593269992 = 0.082167041

You’ll often see this calculation combined in the form of the delta rule:

∂Etotal

∂w5
= −(targeto1 − outo1) ∗ outo1(1− outo1) ∗ outh1

To decrease the error, we then subtract this value from the current weight (optionally multiplied by some
learning rate, eta, which we’ll set to 0.5):

w+
5 = w5 − η ∗

∂Etotal

∂w5
= 0.4− 0.5 ∗ 0.082167041 = 0.35891648

We can repeat this process to get the new weights w6, w7, andw8 : w+
6 = 0.408666186

w+
7 = 0.511301270

w+
8 = 0.561370121

We perform the actual updates in the neural network after we have the new weights leading into the
hidden layer neurons (ie, we use the original weights, not the updated weights, when we continue the
backpropagation algorithm below).

Hidden Layer :

Next, we’ll continue the backwards pass by calculating new values for w1, w2, w3, andw4.

Here’s what we need to figure out:

∂Etotal

∂w1
=
∂Etotal

∂outh1
∗ ∂outh1
∂neth1

∗ ∂neth1
∂w1



Multi Layer Perceptron 7

We’re going to use a similar process as we did for the output layer, but slightly different to account for
the fact that the output of each hidden layer neuron contributes to the output (and therefore error) of
multiple output neurons. We know that outh1 affects both outo1 and outo2 therefore the ∂Etotal

∂outh1
needs

to take into consideration its effect on the both output neurons:

∂Etotal

∂outh1
=

∂Eo1

∂outh1
+

∂Eo2

∂outh1

Starting with ∂Eo1

∂outh1
:

∂Eo1

∂outh1
=

∂Eo1

∂neto1
∗ ∂neto1
∂outh1

We can calculate ∂Eo1

∂neto1
using values we calculated earlier:

∂Eo1

∂neto1
=

∂Eo1

∂outo1
∗ ∂outo1
∂neto1

= 0.74136507 ∗ 0.186815602 = 0.138498562

And ∂neto1
∂outh1

is equal to w5 :

neto1 = w5 ∗ outh1 + w6 ∗ outh2 + b2 ∗ 1

∂neto1
∂outh1

= w5 = 0.40

Plugging them in:

∂Eo1

∂outh1
=

∂Eo1

∂neto1
∗ ∂neto1
∂outh1

= 0.138498562 ∗ 0.40 = 0.055399425

Following the same process for ∂Eo2

∂outh1
, we get:

∂Eo2

∂outh1
= −0.019049119



Multi Layer Perceptron 8

Therefore:

∂Etotal

∂outh1
=

∂Eo1

∂outh1
+

∂Eo2

∂outh1
= 0.055399425 +−0.019049119 = 0.036350306

Now that we have ∂Etotal

∂outh1
, we need to figure out ∂outh1

∂neth1
and then ∂neth1

∂w for each weight:

outh1 =
1

1 + e−neth1

∂outh1
∂neth1

= outh1(1− outh1) = 0.59326999(1− 0.59326999) = 0.241300709

We calculate the partial derivative of the total net input to h1 with respect to w1 the same as we did
for the output neuron:

neth1 = w1 ∗ i1 + w3 ∗ i2 + b1 ∗ 1

∂neth1
∂w1

= i1 = 0.05

Putting it all together:

∂Etotal

∂w1
=
∂Etotal

∂outh1
∗ ∂outh1
∂neth1

∗ ∂neth1
∂w1

∂Etotal

∂w1
= 0.036350306 ∗ 0.241300709 ∗ 0.05 = 0.000438568

We can now update w1 :

w+
1 = w1 − η ∗

∂Etotal

∂w1
= 0.15− 0.5 ∗ 0.000438568 = 0.149780716

Repeating this for w2, w3 and w4

w+
2 = 0.19956143

w+
3 = 0.24975114

w+
4 = 0.29950229

Finally, we’ve updated all of our weights! When we fed forward the 0.05 and 0.1 inputs originally, the
error on the network was 0.298371109. After this first round of backpropagation, the total error is now
down to 0.291027924. It might not seem like much, but after repeating this process 10,000 times, for
example, the error plummets to 0.0000351085. At this point, when we feed forward 0.05 and 0.1, the
two outputs neurons generate 0.015912196 (vs 0.01 target) and 0.984065734 (vs 0.99 target).



Multi Layer Perceptron 9

4 Back Propagation

Let W1,W2 denote the weight matrix at Layer 1, 2 respectively.

Let Z = WT
1 X

Ŷ = WT
2 Z

Cost function:

L(Ŷ , Yi) =
1

2

n∑
i=1

(ŷ − yi)2

Let P = φ(WT
1 X)

Updation rule

W1 = W1 − α
∂L
∂W1

W2 = W2 − α
∂L
∂W2

Computing Grad of Cost function wrt W2

∂L
∂W2

=
1

2

∂
(
WT

2 P − Y
)2

∂W2

∂L
∂W2

= (WT
2 P − Y )P

Computing Grad of Cost function wrt W2

∂L
∂W1

=
∂L
∂Ŷ

∂Ŷ

∂P

∂P

∂Z

∂Z

∂W1

∂L
∂W1

= (Ŷ − Y )WT
2 φ(WT

1 X)X



Multi Layer Perceptron 10

5 Activation Functions

The main function of activation function is to convert a input signal to output signal.If we do not apply
a Activation function then the output signal would simply be a simple linear function.

Some popular activation functions:-

1. Sigmoid function:-

f(x) =
1

1 + e−x
(1)

Diffrential of sigmoid function is given by f’(x)=f(x)(1-f(x))

Figure 1: Sigmoid function

2. tanh

f(x) =
2

1 + e−2x
− 1 (2)

Diffrential of sigmoid function is given by f’(x)=1-f(x)2



Multi Layer Perceptron 11

3. ReLU

f(x) = max(0, x) (3)


