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1 K-means Revisited

1. Training set : {x1, ..., xm}, xi ∈ Rn

The k-means clustering algorithm is as follows:

1. Initialize cluster centroids µ1, µ2, ..., µk ∈ Rn randomly.

2. Repeat until convergence:

For every i, set

ci := arg min
j
‖xi − µj‖2

For each j ,set

2. Problems With K-means

a. Does Hard Assignments

b. Due to Euclidean distance ,K-means makes spherical clusters
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2 GMM and Maximum Likelihood Revisited

• Maximum Likelihood

Data = x1, x2.., xn.

Likelihood Function : L(Θ) = Pr(Data|Θ)

L(Θ) = Pr(Data|Θ) =

n∏
i=1

p(xi|Θ)

Θ∗ = arg min
Θ

Pr(Data|Θ)

• Mixtures of Gaussians

Gaussian mixture model is a simple linear super position of Gaussian components.

Likelihood Function

Maximizing this function for a Gaussian mixture model is complex.Difficulty arises due to
summation over k that appears inside the logarithm. That why we cant obtain closed form
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3 Gaussian Mixture Model Conti.

• We have to device other way to find maximum likelihood.

• Suppose some oracle told us that which point comes from which gaussian. If this happens then we
can easily estimate all the parameters for all gaussians.

• This information can be provided by some latent binary variable Znk. Where Znk = 1 tells that
nth point comes from kth gaussian ,otherwise takes value 0

• So ,Now introduce a K-dimensional binary random variable z having a 1-of-K representation .Ele-
ment zk is equal to 1 and all other elements are equal to 0.The values of zk satisfy zk ∈ {0, 1} and∑

k zk = 1 .There are K possible states for the vector z according to which element is nonzero.

• Represent Marginal Probability of Z in terms of Mixing Coefficient πk

.

• Parameter πk Must Satisfy following:

.

• Because z uses a 1-of-K representation, Probability of z can be written in terms of the πk As
following .here zk is indicator variable.
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.

• Similarly, the conditional distribution of x given a particular value for zk = 1 ,means probability of
point in kth Gaussian

.

• Which boils down to

.

• We can define new likelihood function in terms of joint probability of z and x.

p(X,Z) =

n∏
i=1

p(xi, zi)

p(X,Z) =

n∏
i=1

p(zi) p(xi|zi)..

• Final equation in terms of z and other parameters πk ,µk and Σk is as below

.

• Taking logarithm on both side

.

Where πk = Mixing Coefficient of Kth cluster.
µk = Mean of Kth cluster.
Σk = Co-variance of Kth cluster.

.

• In Above Likelihood Equation Znk is Responsible for hard assignment as it is a indicator binary
random variable. Znk can be described as

Znk =

{
1, Point n comes from Kth cluster

0, otherwise

.

• Due to Random Variable Znk Points get hard assignment. So taking expectation of Znk will map
its value to Real value ,which more or less gives notion of soft assignment. So Finding Expectation
of Likelihood function as follows.
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.
Here γ(znk) = E[znk].
γ(znk) is expectation of znk ,its a continues variable between 0 to 1

.

• Expectation of Znk can be find easily as it is a binary variable

E[Znk] =
∑K

i=1 ZniP (Zni).

since Zik ∈ {0, 1}.

E[Znk] = P(Znk = 1) = γ(Znk)

.

• Interpretation of the γ(Znk)

Its shows the extent to which given point N belongs to kth cluster.
In other words it shows soft membership of point in Kth cluster.
It can be interpreted as conditional probability of z given x.
I.e P(zk = 1|x) ,whose value can be obtained by Bayes theorem.

πk is prior probability of zk = 1
γ(zk) is corresponding posterior probability once we have observed x

.
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4 Expectation Maximization Algorithm for GMM

• Expectation maximization is an iterative algorithm for using maximum likelihood to estimate
the parameters of a statistical model with unobserved (hidden)variables. It has two main steps.
First is the E-step.We compute some probability distribution of the model so we can use it for
expectations.Second comes the M-step, which stands for maximization. In this step, we maximize
the lower bound of the log-likelihood function by generating a new set of parameters with respect
to the expectations.

• First Find the Conditions for which maximum likelihood can be reached. So for that recall the older
maximum likelihood function which is in form of sum of logs and finding optimum parameters from
that function is hard. So try to reduce derivative of that function in terms of our new introduced
variables

.

1) First Taking Derivative w.r.t to µk.

.

As we defined γ(znk) before, it can be used to reduce the term as shown
And after simplifying it, µk can be estimated.

.

where .

.

Nk can be interpreted as the effective number of points assigned to cluster k

2) Taking Derivative w.r.t to Σk we will get.

.

3) Taking Derivative w.r.t to πk

Here we must take account of the constraint
∑
πk = 1

Can be achieved using a Lagrange multiplier
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Now maximize following quantity

Which Gives

.

• EM Algorithm For GMM

Given a Gaussian mixture model,maximize the likelihood function w.r.t parameters

1) Initialize µk , σk and πk and find the initial value of log likelihood.

2) E step : Evaluate the γ(Znk) using the current parameter values.

3) M step : Re-estimate the parameters from γ(Znk)

4) Evaluate the log likelihood .

Check for convergence of either the parameters or the log likelihood.the convergence criterion is
not satisfied return to step 2.



4 EXPECTATION MAXIMIZATION ALGORITHM FOR GMM 9

• Results of EM

1) EM Gives Soft Assignments

2) All points contribute to estimate all components

3) Each point has unit weight to contribute, but splits it across the K components

4) Weight contributed by point to component is proportional to the likelihood that point
was generated by that component.



5 EM AND K-MEANS 10

5 EM and K-means

• K-means can be thought as the special case of EM algorithm

• In K-means we only take cares about mean ,so try to drop out other parameters πk and Σk and
try to reduce likelihood function into simple form having µk only.

• Considerations for K-means

1) Mixing Coefficient
To Drop Mixing Coefficient πk ,Fix all πk to 1/K

2) Fix all co-variances to Σk to constant εI ,Where ε is Variance and I is identity matrix of d*d

3) Take limit as ε goes to 0 ,which behaves as binary assignments .

• So ,now likelihood function for single gaussian changes as below

• Now ,consider mixture of gaussians. Here all Σ is converted to constant ε and Mixing Coefficients
are also considered constant. So now we don’t have to estimate these parameters in EM algorithm

• So now γ(Znk) for a particular data point xn can be written as below.

• Now consider limit ε→ 0 ,in denominator the term for which ‖xn − µj‖2 is smallest will go to zero
most slowly, and hence the γ(znk) for the data point xn all go to zero except for term j ,for which
the it will go to unity.Thus, in this limit, we obtain a hard assignment of data points to clusters,
just as in the K-means algorithm, so that γ(znk) →znk

• So from the limit it can be seen that maximizing the expected log likelihood is equivalent to
minimizing the distortion measure J for the K-means algorithm

Where rnk = znk
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• K-means Algorithm

1) Given N data points x1, x2, ..., xN

2) Find K cluster centers µ1, µ2, ..., µN to minimize

3) Algorithm

a) initialize K cluster centers µ1, µ2, ..., µN

b) E-step : set znk labels to assign each point to closest cluster center

c) M-step : revise each cluster center µk to be center of points in that cluster

Repeat step b if algorithm not converged

• Choosing Value of K

1) Randomly Choose some Hold out set of samples

2) Find log likelihood value for different values of K

3) Pick K which generates maximum log likelihood for hold out set

• Additional Features of GMM

1) GMM allows clustering with missing feature data
One can make gaussian model from the data of feature having missing values.
Now it can predict the missing values from the model

2) GMM lets us generate new data with statistical properties of given data
One can find underlying gaussian distribution from the data.
Which can be used to generate new data having same properties.

• Issues with GMM

1) In GMM we assumes data follows gaussian distributions,it may be different
distributions other then gaussian.

2) GMM dosen’t work for non-convex clusters.
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6 Hierarchical Clustering

• Real World data often have many features and multiple hierarchical structures. K-means and
GMM can be used optimized and captures only one or few layers of it so it will not possible for
these algorithm to capture these types of complex structures.Hierarchical clustring can be used in
these type of scenarios.

• Also as dimension increases ,probability of points to be close decreases due to curse of dimensionality

• Idea is to Build a tree-based hierarchical structure from data.

• Hierarchical clustering : 2 Types

1) Agglomerative clustering( Bottom up )
Start with each point being a single cluster.
Eventually all points belong to the same cluster.

1) Divisive (top-down)( Top Down)
Start with all point belong to the same cluster.
Eventually each point forms a cluster on its own

• Agglomerative clustering

1) Start with each points as own clusters and Merge them greedily

2) Cluster Representative
Representative should be some sort of central point in the cluster
Ex : Centroid or center



6 HIERARCHICAL CLUSTERING 13

• Linkage in Clusters

1. Single Linkage

– Minimum distance between two points i and j such they are in different clusters

L(R, S) = min(D(i, j)), i∈ R, j ∈ S

2. Complete Linkage

– Maximum distance between two points i and j such that i and j belongs to different clus-
ters.

L(R, S) = max(D(i, j)), iεR, jεS

3. Average Linkage

– Arithmetic mean of all distances between all possible pairs (i,j) where i and j belongs to
different clusters.
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